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Abstract, A closed fom, solution is found for tk leaming dynamics of a nonlinear Hebbian 
neuron presented with onhogonal p a m  at difkrent rates. liw basins of amaction for each 
pawn are Falculated 8s a function of lhe probability of tk pattems being pmented. A sample 
independent pmbabilily fM leaming a paaem is found in the limit of a large number of patterns. 
This function is, to a g o d  approximation proponional to tk pmbabitiiy of thc panem being 
presented raised to a power, which depends swngly on the total number of panems and on lhe 
mulineruity of lhe response of lhe neumn to a stimuli. There is also a weak dependence on the 
dishibulions of lhe probabilities of lhe paaans being presented. The implications of lhis work 
for more realistic sitwuions are discussed. 

1. Introduction 

Unsupavized leaming is an important a ~ e a  of research in the field of neural networks. By 
using a Hebbian or Hebbian-like mechanism and allowing simple interactions between the 
" n s .  a network can lesm to form useful self-organized representations of its inputs. 
Modek of unsupervized learning mechanisms have received considerable attention both 
bccause they provided plausible models for real neural systems and because they can be 
u&lly exploited in artificial neural networks [l-51. An example of the latter case is in 
a hybrid architecture where the inputs are 'pre-processed' by an unsupervized layer before 
Mng sent on to a normal back-propagation network 16, section 9.71. The advantage of 
using a hybrid architecture is that, because the pre-processing layer does not require any 
fce&ack from later layers, it will leam relatively quickly. 

The motivations for this paper are two-fold. First, neurons in various parts of the brain 
are fwnd to respond to very specific input stimuli. The model neurons we examine here 
will leam to respond to particular pattems through a simple Hebbian leaming rule. An 
important question is 'what is the probability that a neuron will leam a particular pattern?' 
or. equivalently, in a large group of neurons, 'how many neurons will, on average, leam 
to a particular input stimulus?' This could in principle be measured experimentally. This 
question is also important when using an artificial neural network to learn to clusters in 
some Iridimensional input spaee. The second motivation is to give an example of how 
p&timhg of the input space, &ormed by an unsupervized network, can be calculated. 
lesiawiqf &Is @a&iOning provides a complete description of the function performed by the 
mSwok The model analysed here gives a very clear illustration of how the partitioning 
tan be obtained from the basins of attraction of the stationary points for the model, which 
in Nm cm be deduced by solving the dynamics. It also provides an illustration of how the 
functionality of the networks will depend on how it partitions the input space. 
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The study of this partition has a long history. We give a very brief overview of some 
of this work. An important class of unsupervized networks are competitive networks [ 1- 
3.7-91. In these networks the neurons compete with each other to fire to the current 
input pattern. After many presentations of the input patterns, most of the neurons will 
have learned to fire either to a single pattern or to a cluster of patterns. The neurons thus 
partition the input space, hopefully finding some natural clustering of the input patterns. One 
aim in designing competitive networks has been to achieve a partitioning which properly 
reflects the structure of the input space. That is, to make the number of neurons that fire to 
pattems in a particular region of space proportional to the probability of such pattems being 
presented. To achieve this aim DeSieno [IO] has proposed a 'conscience' mechanism to 
prevent neurons from learning too many patterns. An important elaboration on competitive 
networks is the feature map [2,4,11] in which the neurons try to preserve the topology of the 
input space. The partition problem for the Kohonen feature map has been studied by Ritter 
and Schulter [12-141. A second important example of unsupervized learning is the 'linear 
Hebbian neuron' proposed by Oja [5]. Here a neuron learns to the maximal eigenvector 
of the pattern comelation matrix. Networks of linear neurons, with appropriately chosen 
interactions, can perform principal component analysis [ 151 or a similar decomposition of the 
input space [16]. Theses network can be viewed as partitioning the input space in the sense 
that the neurons pick out special directions, they will then respond strongly only to patterns 
aligned in these directions. These networks are useful in extracting important features from 
high-dimensional, noisy data. Recently a number of authors have studied unsupervized 
learning in networks with various different kinds of nonlinear neurons [17-19]. 

In this paper we consider the partitioning of the input space performed by a nonlinear 
Hebbian neuron [19]. The nonlinearity suppresses the firing of the neuron to weakly 
correlated patterns relative to more strongly correlated patterns. As mentioned above, for 
linear Hebbian neurons the partitioning problem is solved-the neuron learns the principal 
component of the pattern correlation m a h .  For the nonlinear Hebbian neurons, the neuron 
will leam to individual input pattems, provided the response of the neuron to its inputs is 
sufficiently nonlinear. The probability of a particular pattern being learned will depend on 
the basin of attraction of the pattem, which will in turn depend on the size of the pattern and 
on the frequency with which it is presented. We will study the case, familiar in statistical 
mechanics, of a high-dimensional input space in which the patterns are uncorrelated (or 
weakly correlated). This provides a complementary view to the more frequently studied 
low-dimensional input spaces, where simulations can be used. It has the advantages that 
real data are usually high dimensional, but the disadvantage that they are usually highly 
structured. The problem we will consider is the partitioning achieved by the network 
when a set of random patterns is presented at different frequencies (that is, with different 
probabilities). The probability of a neuron learning a pattern, and hence the partitioning 
performed by a network of uncoupled neurons, will depend on the parameters of the neuron 
(in particular on the nonlinearity of the response of the neuron). By varying this parameter 
a variety of different partitionings can be achieved. The required behaviour will depend 
on the application. For example, it might be desired for the patterns to be learned with a 
probability proportional to the frequency with which they are presented. Alternatively, in 
other applications, it might be desirable to learn all the patterns with equal probability, or 
else to learn only the most frequently presented patterns. 

The structure of this paper is as follows. In section 2 we will briefly describe the model 
of the nonlinear neuron. To solve the partitioning problem we proceed in two steps. We 
first calculate the basins of attraction for the fixed-point solutions by solving the learning 
dynamics. TO do this we have approximated the update equations by a set of differential 
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equations which can be solved exactly for orthogonal patterns. This will be presented in 
section 3. This section can also be viewed as giving an analysis of the dynamics for a 
nonlinear neuron to complement the stationary point analysis [19]. From the solutions to 
the dynamics we obtain a simple condition for determining which pattern will win that 
depends only on the frequencies of occurrence of the patterns, the initial overlaps, and a 
single parameter of the model. In the second step we consider the case of a large number 
of patterns which allows us to calculate a sample-independent probability for a pattern to 
be leamed. This calculation is given in section 4. We find that, to a good approximation, 
if a pattern is shown with a relative frequency proportional to r .  with 0 < r 6 1, then the 
probability of it being learned is 

where x ir. 2 log(P)/(b - l), P is the number of patterns, and b is a parameter that controls 
the nonlinearity of the neuron’s response. If b is chosen so that x = 1, then the probability 
of a neuron learning a pattern will be proportional to the frequency with which the pattern 
is presented. 

In the final sections we discuss the implications of this work to more realistic situations. 
In particular we consider the behaviour of neurons with a sigmoid activation function, and 
we briefly outline what we expect to happen when the input patterns are more complex. 
We also discuss the importance of introducing inhibitory interactions in order to achieve a 
desired partitioning. 

2. The model neuron 

The model neuron we will consider can be viewed as a nonlinear extension to Oja’s model 
[SI. The neuron receives N inputs through modifiable synapses wi ,  where i = 1,. . . , N. We 
will study the situation when a set of P patterns are presented to the neurons. We represent 
the patterns by a set of vectors E” = (ti”, . . . , t:), where the superfix /I = 1,. . . , P labels 
the different patterns. 

The patterns produce a post-synaptic potential V” in the cell, given by 

The cell is assumed not to fire when the post-synaptic potential, V”, is negative and to fire 
according to a simple power law when V p  is positive. Denoting the activation function by 
A(V’) ,  then 

V” > 0 
v p  < o  

A ( V P )  = (V”)bO(Vp)  = 

where b measures the degree of nonlinearity in the response of the neuron. 

rule 
On presenting a pattern e’, the synaptic weights, wi. change according to the update 
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The first term can be viewed as a ‘linear Hebbian’ term-the change in weight is proportional 
to the input activity and the cell activation. The second term can be thought of as a decay- 
like term which ensures that the weight vector w becomes normalized, since 

(2.4 
but A ( V p ) V p  2 0, so when IwI e 1 then IwI increases, while when IwI > 1 then IwI 
decreases. Close to the fixed point A(Vp)V” 1, so that r must be less than one for the 
weight vector to converge. 

When the learning rate, r ,  is sufficiently small the discrete dynamics (2.3) can 
be replaced by a differential equation. In this limit we can also make the adiabatic 
approximation of considering the updating to occur &er presenting all the patterns. We 
will assume that the patterns are presented at different rates, so that the learning towards 
a pattern will be weighted by its frequency. We define the frequency of presentation of 
pattern p to be proportional to r p .  Using these assumptions the learning equation (2.3) 
becomes 

A Prugel-Bennett and J L Shapiro 

w .  6w = 16lwlz = r ( l  - ~ W ~ ~ ) A ( V & ) V ”  

Although this is strictly true only in the h i t  of an infinitesimal learning rate, it will be a 
good approximation provided 6wj is small. However, when the overlaps, V p ,  are small, 
Swi will be small, even if r is of order 1. Thus, this approximation will be valid for 
the initial dynamics, and will only break down when V p  becomes large, but when V @  is 
large the pattem which will be learned has already been determined. Thus we expect that 
equation (2.5) will give a good prediction for which pattern is learned, even when r is large. 

We note that, if the patterns have different lengths, then we would obtain the same 
dynamics by simultaneously rescaling the patterns ,$p -+ ,$p/I,$”I and the rp’s .  r p  + 
I,$@lb+’rw. Therefore, the effect of having different length patterns can be absorbed into the 
r p ’ s .  In this paper we will assume that the pattems all have the same length. Clearly the 
generalization to patterns with different lengths is straightforward. 

The final state learned by the neuron depends on the parameter b and on the correlation 
between the pattems. When b is less than some critical value, which depends on the intra- 
pattern correlation, the weight vector, w, will learn to some mixture of the patterns. When 
b = 1 (and there is no threshold) this model is identical to Oja’s linear neuron. In this 
case, the neuron learns to the maximal eigenvector (or principal component) of the pattern 
correlation matrix M j j  = E, e,?.$. For b above its critical value the neuron learns to one 
of the input patterns. Which pattern it learns depends on where it started. (In the case when 
the weight vector starts negatively correlated with all the patterns the neuron will never 
learn, but the probability of this happening is 2-’, and we will not discuss this possibility 
furfher.) A fuller analysis of this model is given in [19]. 

In this paper we consider the case when the stimuli are independent randomly chosen 
variables with ((6;)’) = 1/N. Thus ,$p .E“ = 6p.” + O(l / f i ) .  We shall consider the 
case when N is sufficiently large that the intra-pattern correlations can be neglected; i.e. 
the patterns can be considered to be orthogonal. For orthogonal patterns the critical value 
of b is 1. In the rest of this paper we will consider only the case b > I, so that the weight 
vector leams to align itself with one of the pattems. Although we have considered here 
only a single neuron, we can consider a network consisting of a set of uncoupled neurons. 
Provided the initial weight vectors are different from each other, the neurons are unlikely 
to learn the same pattern. Such a network, however, will not find a very even partitioning 
of the inputs due to random fluctuations. In section 5 we discuss briefly how including 
interactions between the neurons can improve the partitioning. 
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3. Solutions of the learning dynamics 

For general patterns the set of differential equations (2.5) cannot be solved as they are 
coupled and nonlinear. However, for orthogonal patterns the equations decouple and are of 
a form that can be solved To see. this we start by multiplying equation ( 2 5 )  through by # 
and summing over i ,  to obtain a set of equations for the evolution of the overlaps 

where we have used Vp = c p  . w. Since the patterns are orthogonal, this can be written as 

dV’ - = r’A(VP) - V @ g ( f )  df (3.2) 

where 

g(t) = Cr”A(VY)VV.  

Although we do not know the form of the function go), it is the same for each patten 
Equation (3.2) can be solved exactly because, when VP is less than zero, A(  VP) = 0 and the 
equation is linear, while when VP is greater than zero, A(V’) = (Vfi)b and the differential 
equation has the form of a Bernoulli equation, This can be turned into a linear equation by 
making the substitution U = (V+)’-b and then solved by introducing an integnting factor. 

In order to write the final solution in a more elegant form it is useful to note that, from 
(3.2). 

so that 

(3.4) 

Substituting (3.5) into equation (3.2) we find the overlaps evolve according to 

V,Y(t) v: < o  
v: y (t) v: > 0 (3.6) I (I - rP(b - t ) (~ / )b- l  ( ~ ( t ’ ) ) b - ’  w)”‘~-’) 

V P ( f )  = 

where 

(3.7) 

It is easy to understand the dynamics of the overlaps from equation (3.6). Initially 
Y(f) = I ,  and it remains close to 1 so long as the overlaps V’ are all small. Thus for small 
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times. and for those patterns that started positively correlated with the neuron, the overlaps 
grow as 
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(3.8) 

The overlaps all remain small until t * - I ) (V, , )~-~)  for one of the patterns. 
When this happens the overlap for the pattern in question grows rapidly and forces Y ( t )  to 
zero, which then sends the overlaps for the other pattems to zero. Since the integral in the 
denominator of equation (3.6) is identical for each pattem, the pattern that will be learned 
is that for which 

r”(V,”)”-’ > r ” ( v l ) b - ’  vv # IL. (3.9) 

This defines the basin of attraction for each pattem. For truly orthogonal patterns, and 
in the limit of infinitesimally small r ,  this condition is exact For large random patterns 
and r of order I, this should still be a good approximation. To calculate the probability 
of a particular pattem being leamed we must average over all possible initial overlaps, 
V ( .  Since the patterns are high dimensional with components, er, which are independent 
random variables, the overlaps will be Gaussian distributed. Thus the probability of learning 
a pattem, €@, which is presented with a probability r’/ E, r” is 

(3.10) 

For a given set of frequencies, { r p ) ,  we can calculate p(rp )  by numerically integrating 
equation (3.10). 

4. Partitioning 

In this section we consider the case when there is a large number of patterns, so that the 
probability of learning a pattem becomes sample independent. To make this more precise 
we assume that the r p ’ s  are drawn from some distribution p ( r ) .  In the large-P limit the 
probability of learning a pattem self-averages, so that p ( r p )  does not depend on the other 
r”’s (although it will depend on the distribution p(r)) .  Since only the relative frequencies 
of presentation are important, we are free to choose the scale of the rp’s.  In the following 
we will choose this scale so that rfl has a maximum of I. 

If all the patterns are shown equally often (i.e. p ( r )  = 6(r  - I)), the integral in 
equation (3.10) can be performed exactly giving a probability of learning each pattem of 
(I  - 2-‘)/P. When the rp’s come from a more complicated distribution the integral 
cannot be performed exactly and we must resoIt to a saddle-point evaluation. The saddle- 
point equation gives an equation for p ( r ” ) .  It tuns out that for large P ,  and moderately 
large b, this is well approximated by a simple power law. We have used least-squares fitting 
to calculate this power law. 

The first step in this calculation is to rewrite equation (3.10) as 
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where @ ( y )  denotes the normal probability function, defined by 

Since there are a very large number of pattems we can replace the sum in equation (4.1) 
with its average 

Making the substitution U = (rp/r)’/“-b)x we can write this as 

Equation (4.1) has a saddle point for x - O ( m ) .  For large P the integral above will 
be well approximated by its asymptotic expansion. Expanding log[@(u)] for large U and 
performing the asymptotic expansion, equation (4.4) becomes 

where we have ignored terms of order I /  log(P). Putting this back into equation (4.1) and 
differentiating with respect to x we find that the integrand is a maximum when 

Substituting back into equation (4.1)- we find to leading order in r 

p ( r )  = C exp(-Br-z/‘b-’l) (4.7) 

where the normalization constant, C ,  is given by 

n 

where r ( ( b  - 1)/2, B )  is the incomplete gamma function, and where B is, ignoring terms 
smaller than those shown, 

(b - - 4 log(log(P)). (4.9) ( 4 4 5  1 B = log(P) + 1 + log 

From equations (4.7H4.9) we see that, in the large-P limit, the leading term in B is 
log(P) and all the patterns which occur with a rate r < 1 will be very strongly suppressed. 
The leading corrections will be of order log(log(P)). However, for a realistic number 
of pattems log(P) never becomes huge and log(log(P)) will be of the same order as the 
constant terms. For example, when b = 2 and P = 100 then 8 * 2.7, when b = 2 and 
P = 1000 then 5 cz 4.9, and when b = 10 and P = 100 then B 4.4. The precise value 
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of B will depend on the distribution of the frequencies, p(r) ,  although this dependence is 
only slight If, for example, p(r") = (U + 1)r" then p(1) = (U + 1) and the dependence of 
p ( r )  on U occurs only in B = B' + log( 1 + U ) .  

Equation (4.7) is somewhat cumbersome and it turns out that, for moderate values of 
b, this function is well approximated by a simple power law, p ( r )  0: rx .  To calculate x we 
perform a least-squares fit. We define an e m  

A Priigel-Bennett and J L Shapiro 

(4.10) 

By an appropriate change of variables we can write E(x) in terms of incomplete gamma 
functions. We find that E ( x )  is minimized when x satisfies 

(4.1 1)  

To solve for x we use the (truncated) continued fraction expansion for the incomplete gamma 
function 

(4.12) 

Using this, the optimum value for x is 2(B + l)/(b - I) ,  while the error E(x). for this 
optimum value, is given by 2(2B + 1 + b)'/(b - 1)(4B + 1 + b)(4B + 3 + b) ,  which for 
large B is approximately 1/[2(b - I)]. Thus p ( r )  is approximately given by 

(4.13) 

where the approximation becomes increasingly good as b ,is increased If we wish p ( r )  to 
be proportional to r then, using equations (4.9) and (4.13), we find that for P = I00 the 
nonlinearity b should be 6.5, while for P = IOOO, b % 8.5. 

5. Conclusion 

We have seen that, for neurons with a simple power-law activation function, and with 
effectively orthogonal input pattems, we can calculate the probability of it learning a 
particular pattem, and by altering the degree of nonlinearity, we can achieve a variety 
of different behaviours. In this section we discuss what happens when we wlax some of 
these conditions. 

We consider first the effect of using a sigmoid activation function. For highly nonlinear 
responses using a sigmoid activation function can greatly increase the speed of learning. 
The reason for this is clearly seen by considering the approximate solutions to the dynamics 
equation (3.8). We see that (within this approximation) the neuron will learn when 

(5.1) 

But V{ is of order l / a ,  therefore. as we increase b, the time it takes for the neuron to 
leam grows as N[b-'l/2. To compensate for this we would like to increase the leaming rate 
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r in equation (2.3). However, as we have already noted, r must be less than 1 in order for 
the weight vector to converge to a pattern. To overcome this problem we can use a sigmoid 
activation function, for example, 

This is clearly always less than 1, but for small V@ it is well approximated by the simple 
power law 

A(V@) c(V@)~@(VP). 

Thus we have effectively increased the learning rate by a factor c. Provided C ( V @ ) ~  is 
negligible compared with 1, the sigmoid function is essentially a simple power law and 
the analysis given in this paper will apply to the sigmoid function. Thii approximation 
will break down only when V@ becomes macroscopic, but the neuron spends a negligible 
amount of time in this region before it leams. Thus using a sigmoid function (with not too 
large a c)  should not significantly alter the final state that is learned. 

The effect of intrcducing correlated pattems is much more complicated. If the input 
patterns are random but low dimensional so that the intra-pattern correlation is significant, 
then some pattems might be preferentially leamed. If the pattems are not single points 
in input space but extended (for example, they may be clusters of points), but otherwise 
random, then the neuron would leam to the extended pattems just as they leamed to a single 
pattern. The fixed point in this case would be close to the ‘centre of gravity’ of the patterns. 
To see this we assume that the pattems are distributed according to some distribution P(.$). 
Again, using equation (2.3) and making an adiabatic approximation, the change in weight 
vector will be given by 

where the integral is over the space of the pattems. At a fixed point, w* say, (Sw) = 0. 
Writing = w* + o, the fixed point is then given by 

W* = C P (w* + z)A(l+ w * .  z)zdz (5.5) J 
where C is a normalization constant. If the pattems are normalized w* . x = -1z2)/2, 
and around the fixed point, A ( l  + w’ . z) is very nearly constant. Further from the fixed 
point A(l -k w* . z) falls to zero. Thus the neuron learns to the ‘centre of gravity’ of the 
patterns multiplied by a local weighting function. For sigmoid functions this local weighting 
function is closer to 1 for small 111, and then falls off more rapidly to zero. 

Although we have shown that we can control the probability with which a neuron will 
leam a pattern by altering b, we should note that this does not guarantee that a group of 
neurons will learn a set of input patterns with the probability that we would desire. This 
is because, by chance, some patterns might be learned by several neurons while another 
pattern, which has an equal chance of being learned, is not learned at all. To overcome these 
random fluctuations we can introduce a small inhibitory interaction between the neurons so 
that when a pattern is leamed by one neuron the probability of another neuron learning the 
same pattern is reduced. This kind of competitive network is more complicated to analyse 
because of the coupling between the neurons. We discuss the partition problem for this 
network elsewhere [20]. 
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